
PettingZoo: Gym for Multi-Agent Reinforcement
Learning

J. K. Terry∗†
justin.terry@swarmlabs.com

Benjamin Black∗†
benjamin.black@swarmlabs.com

Nathaniel Grammel†
ngrammel@umd.edu

Mario Jayakumar†
mariojay@umd.edu

Ananth Hari‡
ahari1@umd.edu

Ryan Sullivan∗†
ryan.sullivan@swarmlabs.com

Luis Santos§
lss@umd.edu

Rodrigo Perez ¶
rlazcano@umd.edu

Caroline Horsch∗†
caroline.horsch@swarmlabs.com

Clemens Dieffendahl ‖
dieffendahl@campus.tu-berlin.de

Niall L. Williams†
niallw@umd.edu

Yashas Lokesh†
yashloke@umd.edu

Praveen Ravi†
pravi@umd.edu

Abstract

This paper introduces the PettingZoo library and the accompanying Agent Envi-
ronment Cycle (“AEC”) games model. PettingZoo is a library of diverse sets of
multi-agent environments with a universal, elegant Python API. PettingZoo was
developed with the goal of accelerating research in Multi-Agent Reinforcement
Learning (“MARL”), by making work more interchangeable, accessible and re-
producible akin to what OpenAI’s Gym library did for single-agent reinforcement
learning. PettingZoo’s API, while inheriting many features of Gym, is unique
amongst MARL APIs in that it’s based around the novel AEC games model. We
argue, in part through case studies on major problems in popular MARL environ-
ments, that the popular game models are poor conceptual models of the games
commonly used with MARL, that they promote severe bugs that are hard to detect,
and that the AEC games model addresses these problems.

1 Introduction

Multi-Agent Reinforcement Learning (MARL) has been behind many of the most publicized achieve-
ments of modern machine learning — AlphaGo Zero [Silver et al., 2017], OpenAI Five [OpenAI,
2018], AlphaStar [Vinyals et al., 2019]. These achievements motivated a boom in MARL research,
with Google Scholar indexing 9,480 new papers discussing multi-agent reinforcement learning in
2020 alone. Despite this boom, conducting research in MARL remains a significant engineering
∗Swarm Labs
†Department of Computer Science | University of Maryland, College Park
‡Department of Electrical and Computer Engineering | University of Maryland, College Park
§Department of Mechanical Engineering | University of Maryland, College Park
¶Maryland Robotics Center | University of Maryland, College Park
‖Faculty of Electrical Engineering and Computer Science | Technical University of Berlin

Preprint. Under review.

ar
X

iv
:2

00
9.

14
47

1v
6

 [
cs

.L
G

]
 1

6
Ju

n
20

21

challenge. This is because, unlike single agent reinforcement learning which has OpenAI’s Gym, no
de facto standard API exists in MARL for how agents interface with environments. This makes the
reuse of existing learning code for new purposes require substantial effort, consuming researchers’
time and preventing more thorough comparisons in research. This lack of a standardized API has
also prevented the proliferation of learning libraries in MARL. While a massive number of Gym-
based single-agent reinforcement learning libraries or code bases exist (as a rough measure 669
pip-installable packages depend on it at the time of writing GitHub [2021]), only 5 MARL libraries
with large user bases exist [Lanctot et al., 2019, Weng et al., 2020, Liang et al., 2018, Samvelyan
et al., 2019, Nota, 2020]. The proliferation of these Gym based learning libraries has proved essential
to the adoption of applied RL in fields like robotics or finance and without them the growth of applied
MARL is a significantly greater challenge. Motivated by this, this paper introduces the PettingZoo
library and API, which was created with the goal of making research in MARL more accessible and
serving as a multi-agent version of Gym.

Prior to PettingZoo, the numerous single-use MARL APIs almost exclusively inherited their design
from the two most prominent mathematical models of games in the MARL literature—Partially
Observable Stochastic Games (“POSGs”) and Extensive Form Games (“EFGs”). During our develop-
ment, we discovered that these common models of games do not make good conceptual sense for
multi-agent games implemented in code and cannot form the basis of APIs that cleanly handle all
types of multi-player environments.

To solve this, we introduce a new formal model of games, Agent Environment Cycle (“AEC”) games
that serves as the basis of the PettingZoo API. We argue that this model is a better conceptual fit
for games implemented in code. and is uniquely suitable for general MARL APIs. We then prove
that any AEC game can be represented by the standard POSG model, and that any POSG can be
represented by an AEC game. To illustrate the importance of the AEC games model, this paper
further covers two case studies of severe bugs in popular MARL implementations. In both cases,
these bugs went unnoticed for a long time. Both stemmed from using confusing models of games,
and would have been made impossible by using an AEC games based API.

The entire PettingZoo library is available for review in the supplemental materials.

2 Background and Related Works

Here we briefly survey the state of modeling and APIs in MARL, beginning by briefly looking at
Gym’s API (Figure 1). This API is the de facto standard in single agent reinforcement learning, has
largely served as the basis for subsequent multi-agent APIs, and will be compared to later.

import gym
env = gym.make(’CartPole-v0’)
observation = env.reset()
for _ in range(1000):

action = policy(observation)
observation, reward, done, info = env.step(action)

env.close()

Figure 1: An example of the basic usage of Gym

from ray.rllib.examples.env.multi_agent
import MultiAgentCartPole

env = MultiAgentCartPole()
observations = env.reset()
for _ in range(1000):

actions = policies(agents, observation)
observations, rewards, dones,

infos = env.step(actions)
env.close()

Figure 2: An example of the basic usage of
RLlib

The Gym API is a fairly straightforward Python API that borrows from the POMDP conceptualization
of RL. The API’s simplicity and conceptual clarity has made it highly influential, and it naturally
accompanying the pervasive POMDP model that’s used as the pervasive mental and mathematical
model of reinforcement learning [Brockman et al., 2016]. This makes it easier for anyone with an
understanding of the RL framework to understand Gym’s API in full.

2.1 Partially Observable Stochastic Games and RLlib

Multi-agent reinforcement learning does not have a universal mental and mathematical model like
the POMDP model in single-agent reinforcement learning. One of the most popular models is the
partially observable stochastic game (“POSG”). This model is very similar to, and strictly more
general than, multi-agent MDPs [Boutilier, 1996], Dec-POMDPs [Bernstein et al., 2002], and

2

Stochastic (“Markov”) games [Shapley, 1953]). In a POSG, all agents step together, observe together,
and are rewarded together. The full formal definition is presented in Appendix C.1

This model of simultaneous stepping naturally translates into Gym-like APIs, where the actions,
observations, rewards, and so on are lists or dictionaries of individual values for agents. This design
choice has become the standard for MARL outside of strictly turn-based games like poker, where
simultaneous stepping would be a poor conceptual fit [Lowe et al., 2017, Zheng et al., 2017, Gupta
et al., 2017, Liu et al., 2019, Liang et al., 2018, Weng et al., 2020]. One example of this is shown in
Figure 2 with the multi-agent API in RLlib [Liang et al., 2018], where agent-keyed dictionaries of
actions, observations and rewards are passed in a simple extension of the Gym API.

This model has made it much easier to apply single agent RL methods to multi-agent settings.
However, there are two immediate problems with this model:

1. Supporting strictly turn-based games like chess requires constantly passing dummy actions
for non-acting agents (or using similar tricks).

2. Changing the number of agents for agent death or creation is very awkward, as learning
code has to cope with lists suddenly changing sizes.

2.2 OpenSpiel and Extensive Form Games

In the cases of strictly turn based games where POSG models are poorly suited (e.g. Chess), MARL
researchers generally mathematically model the games as Extensive Form Games (“EFG”). The EFG
represents games as a tree, explicitly representing every possible sequence of actions as a root to
leaf path in the tree. Stochastic aspects of a game (or MARL environment) are captured by adding
a “Nature” player (sometimes also called “Chance”) which takes actions according to some given
probability distribution. For a full definition of EFGs, we refer the reader to Osborne and Rubinstein
[1994] or Appendix C.2. OpenSpiel [Lanctot et al., 2019], a major library with a large collection
of classical board and card games for MARL bases their API off of the EFG paradigm, the API of
which is shown in Figure 3.

import pyspiel
import numpy as np

game = pyspiel.load_game("kuhn_poker")
state = game.new_initial_state()
while not state.is_terminal():

if state.is_chance_node():
Step the stochastic environment.
action_list, prob_list = zip(*state.chance_outcomes())
state.apply_action(np.random.choice(action_list, p=prob_list))

else:
sample an action for the player
legal_actions = state.legal_actions()
observations = state.observation_tensor()
action = policies(state.current_player(), legal_actions, observations)
state.apply_action(action)
rewards = state.rewards()

Figure 3: An example of the basic usage of OpenSpiel

The EFG model has been successfully used for solving problems involving theory of mind with
methods like game theoretic analysis and tree search. However, for application in general MARL
problems, three immediate concerns arise with the EFG model:

1. The model, and the corresponding API, is very complex compared to that of POSGs, and isn’t
suitable for beginners the way Gym is—this environment API is much more complicated
than Gym’s API or RLLib’s POSG API for example. Furthermore, due to the complexity of
the EFG model, reinforcement learning researchers don’t ubiquitously use it as a mental
model of games in the same way that they use the POSG or POMDP model.

2. The formal definition only includes rewards at the end of games, while reinforcement
learning often requires frequent rewards. While this is possible to work around in the API
implementation, it is not ideal.

3

3. he OpenSpiel API does not handle continuous actions (a common and important case in
RL), though this was a choice that is not inherent to the EFG model.

It’s also worth briefly noting that some simple strictly turn based games are modeled with the single-
player Gym API, with the environment alternating which agent is controlled, [Ha, 2020]. This
approach is unable to reasonably scale beyond two agents due to the difficulties of handling changes
in agent order (e.g. Uno), agent death, and agent creation.

3 PettingZoo Design Goals

Our development of PettingZoo both as a general library and an API centered around the following
goals.

3.1 Be like Gym

In PettingZoo, we wanted to leverage Gym’s ubiquity, simplicity and universality. This created two
concrete goals for us:

• Make the API look and feel like Gym, and relatedly make the API pythonic and simple
• Include numerous reference implementations of games with the main package

Reusing as many design metaphors from Gym as possible will help its massive existing user base to
almost instantly understand PettingZoo’s API. Similarly, for an API to become standardized, it must
support a large collection of useful environments to attract users and for adoption to begin, similar to
what Gym did.

3.2 Be a Universal API

If there is to be a Gym-like API for MARL, it has to be able to support all use cases and types
of environments. Accordingly, several technically difficult cases exist that have to be carefully
considered:

• Environments with large numbers of agents
• Environments with agent death and creation
• Environments where different agents can be chosen to participate in each episode
• Learning methods that require access to specialty low level features

Two related softer design goals for universal design are ensuring the API is simple enough for
beginners to easily use, and making the API easily changeable if the direction of research in the field
dramatically changes.

4 Case Studies of Problems With The POSG Model in MARL

To supplement the description of the problems with the POSG models described in Section 2.1, we
overview problems with basing APIs around these models that could theoretically occur in software
games, and then examine real cases of those problems occurring in popular MARL environments.
We specifically focus on POSGs here because EFG based APIs are extraordinarily rare (OpenSpiel is
the only major one), while POSG based ones are almost universal.

4.1 POSGs Don’t Allow Access To Information You Should Have

Another problem with modeling environments using simultaneous actions in the POSG model is that
all of an agent’s rewards (from all sources) are summed and returned all at once. In a multi-agent
game though, this combined reward is often the composite reward from the actions of other players
and the environment. Similarly, you might want to be able to attribute the source of this reward for
various learning reasons, or for debugging purposes to find out the origin of your rewards. However,
in thinking about reward origins, having all rewards emitted at once proves to be very confusing

4

because rewards from different sources are all combined. Accessing this information via an API
modeled after a POSG requires deviating from the model. This would come in the form of returning
a 2D array of rewards instead of a list, which would be difficult to standardize and inconvenient for
learning code to parse.

A notable case where this caused an issue in practice is in the popular pursuit gridworld environment
from Gupta et al. [2017], shown in Figure 4. In it, 8 red controllable pursuer must work together to
surround and capture 30 randomly moving blue evaders. The action space of each pursuer is discrete
(cardinal directions or do nothing), and the observation space is a 7× 7 box centered around a pursuer
(depicted by the orange box). When an evader is surrounded on all sides by pursuers or the game
boundaries, each contributing pursuer gets a reward of 5.

Figure 4: The pursuit environment from Gupta et al. [2017].

In pursuit, pursuers move first, and then evaders move randomly, before it’s determined if an evader
is captured and rewards are emitted. Thus an evader that “should have” been captured is not actually
captured. Having the evaders move second isn’t a bug, it’s just way of adding complexity to the classic
genre of pursuer/evader multi-agent environments [Vidal et al., 2002], and is representative of real
problems. When pursuit is viewed as an AEC game, we’re forced to attribute rewards to individual
steps, and the breakdown becomes pursuers receiving deterministic rewards from surrounding the
evader, and then random reward due to the evader moving after. Removing this random component
of the reward (the part caused by the evaders action after the pursuers had already moved), should
then lead to superior performance. In this case the problem was so innocuous that fixing it required
switching two lines of code where their order made no obvious difference. We experimentally validate
this performance improvement in Appendix A.1, showing that on average this change resulted in up
to a 22% performance in the expected reward of a learned policy.

Bugs of this family could easily happen in almost any MARL environment, and analyzing and
preventing them is made much easier when using the POSG model. Because every agent’s rewards
are summed together in the POSG model, this specific problem when looking at the code was
extraordinarily non-obvious, whereas when forced to attribute the reward of individual agents this
becomes clear. Moreover if an existing environment had this problem, by exposing the actual sources
of rewards to learning code researchers are able to remove differing sources of reward to more
easily find and remove bugs like this, and in principle learning algorithms could be developed that
automatically differently weighted different sources of reward.

4.2 POSGs Based APIs Don’t Make Conceptual Sense For Games Implemented In Code

Introducing race conditions is a very easy mistake to make in MARL code in practice, and this occurs
because simultaneous models of multi-agent games are not representative of how game code normally
executes. This stems from a very common scenario in multi-agent environments where two agents
are able to take conflicting actions (i.e. moving into the same space). This discrepancy has to be
resolved by the environment (i.e. collision handling); which we call “tie-breaking.”

Consider an environment with two agents, Alice and Bob, in which Alice steps first and tie-breaking
is biased in Alice’s favor. If such an environment were assumed to have simultaneous actions, then
observations for both agents would be taken before either acted, causing the observation Bob acts on
to no longer be an accurate representation of the environment if a conflict with biased tie-breaking
occurs. For example, if both agents tried to step into the same square and Alice got the square
because she was first in the list, Bob’s observation before acting was effectively inaccurate and the
environment was not truly parallel. This behavior is a true race condition—the result of stepping
through the environment can inadvertently differ depending on the internal resolution order of agent
actions.

5

In any environment that’s even slightly complex, a tremendous number of instances where tie-
breaking must be handled will typically. In any cases where a single one is missed, the environment
will have race conditions that your code will attempt to learn. While finding these will always be
important, a valuable tool to mitigate these possibilities is to use an API that treats each agent as
acting sequentially, returning new observations afterwards. This entirely prevents the opportunity
for introducing race conditions. Moreover, this entire problem stems from the fact that using APIs
that model agents as updating sequentially for software MARL environments generally makes more
conceptual sense than modeling the updates as simultaneous—unless the authors of environments use
very complex parallelization, the environments will actually be updated one agent at a time.

In Appendix A.1 we go through a case study of a race condition like this happening in the open source
implementation of the social sequential dilemma game environments [Vinitsky et al., 2019]. These
are popular multi-agent grid world environments intended to study emergent behaviors for various
forms of resource management, and has imperfect tie-breaking in a case where two agents try to act
on resources in the same grid while using a simultaneous API. This bug in particular illustrates how
extraordinarily difficult making all tie-breaking truly unbiased is in practice even for fairly simple
environments. We defer this to the appendix as explaining the specific origin requires a large amount
of exposition and diagrams about the rules of the environment.

5 The Agent Environment Cycle Games Model

Motivated by the problems with applying the POSG and EFG models to MARL APIs, we developed
the Agent Environment Cycle (“AEC”) Game. In this model, agents sequentially see their observation,
agents take actions, rewards are emitted from the other agents, and the next agent to act is chosen.
This is effectively a sequentially stepping form of the POSG model.

Modeling multi-agent environments sequentially for APIs has numerous benefits:

• It allows for clearer attribution of rewards to different origins, allowing for various learning
improvements, as described in Section 4.1.

• It prevents developers adding confusing and easy-to-introduce race conditions, as described
in Section 4.2.

• It is more closed models how computer games are executed in code, as described in Sec-
tion 4.2.

• It formally allows for rewards after every step as is required in RL, but is not generally a
part of the EFG model, as discussed in Section 2.2.

• It is simple enough to serve as a mental model, especially for beginners, unlike the EFG
model as discussed in Section 2.2 and illustrated in the definition in Appendix C.2.

• Changing the number of agents for agent death or creation is less awkward, as learning code
does not have to account for lists constantly changing sizes, as discussed in Section 2.1.

• It is the least bad option for a universal API, compared to simultaneous stepping, as alluded
to in Section 2.1. Simultaneous stepping requires the use of no-op actions if not all agents
can act which are very difficult to deal with, whereas sequentially stepping agents that could
all act simultaneously and queuing up their actions is not especially inconvenient.

In Appendix C.3 we mathematically formalize the AEC games model, however understanding the
formalism in full is not essential to understanding the paper. In Appendix D we further prove that for
every AEC game an equivalent POSG exists and that for every POSG an equivalent AEC game exists.
This shows that the AEC games model is as powerful a model as the most common current model of
multi-agent environments.

One additional conceptual feature of the AEC games model exists that we have not previously
discussed because it does not usually play a role in APIs (see Section 6.4). In the AEC games
model, we deviate from the POSG model by introducing the “environment” agent, which is analogous
to the Nature agent from EFGs. When this agent acts in the model it indicates the updating of
the environment itself, realizing and reacting to submitting agent actions. This allows for a more
comprehensive attribution of rewards, causes of agent death, and discussion of games with strange
updating rules and race conditions. An example of the transitions for Chess is shown in Figure 5,
which serves as the inspiration for the name “agent environment cycle”.

6

Player 1

Environment Step 1

Player 2

Environment Step 2

Figure 5: The AEC diagram of Chess

6 API Design

6.1 Basic API

The PettingZoo API is shown in Figure 6, and the strong similarities to the Gym API (Figure 1)
should be obvious — each agent provides an action to a step function and receives observation,
reward, done, info as the return values. The observation and state spaces also use the the exact
same space objects as Gym. The render and close methods also function identically to Gym’s,
showing a current visual frame representing the environment to the screen whenever called. The
reset method similarly has identical function to Gym — it resets the environment to a starting
configuration after being played through. PettingZoo really only has two deviations from the regular
Gym API — the last and agent_iter methods and the corresponding iteration logic.

from pettingzoo.butterfly import pistonball_v0
env = pistonball_v0.env()
env.reset()
for agent in env.agent_iter(1000):

env.render()
observation, reward, done, info = env.last()
action = policy(observation, agent)
env.step(action)

env.close()

Figure 6: An example of the basic usage of Pettingzoo

6.2 The agent_iter Method

The agent_iter method is a generator method of an environment that returns the next agent that
the environment will be acting upon. Because the environment is providing the next agent to act,
this cleanly abstracts away any issues surrounding changing agent orders, agent generation, and
agent death. This generation also parallels the functionality of the next agent function from the AEC
games model. This method, combined with one agent acting at once, allows for the support of every
conceivable variation of the set of agents changing.

6.3 The last Method

An odd aspect of multi-agent environments is that from the perspective of one agent, the other agents
are part of the environment. Whereas in the single agent case the observation and rewards can be
given immediately, in the multi-agent case an agent has to wait for all other agents to act before it’s
observation, reward, done and info can be fully determined. For this reason, these values are
given by the last method, and they can then be passed into a policy to choose an action. Less robust
implementations would not allow for features like changing agent orders (like the reverse card in
Uno).

7

6.4 Additional API Features

The agents attribute is a list of all agents in the environment, as strings. The rewards, dones,
infos, action_spaces and observation_spaces attributes are agent-keyed dictionaries for each
attribute (note that the rewards are the instantaneous ones resulting from the most recent action).
These allow access to agent properties at all points on a trajectory, regardless of which is selected.
The observe(agent) method provides the observation for a single agent by passing its name as an
argument, which can be useful if you need to observe an agent in an unusual context. The state
method is an optional method returns the global state of an environment, as is required for centralized
critic methods. The agent_selection method returns the agent that can currently be acted upon
per agent_iter.

The motivation for allowing access to all these lower level pieces of information is to let researchers to
attempt novel, unusual experiments. The space of multi-agent RL has not yet been comprehensively
explored, and there are many perfectly plausible reasons you might want access to other agents
rewards, observations, and so on. For an API to be universal in an emerging field, it inherently has to
allow access to all the information researchers could plausibly want. For this reason we allow access
to a fairly straightforward set of lower level attributes and methods in addition to the standard higher
level API. As we outline in Section 6.5, we’ve structured PettingZoo in a way such that including
these low-level features doesn’t introduce engineering overhead in creating environments.

To handle environments where different agents can be present on each reset of an environment,
PettingZoo has an immutable possible_agents attribute which lists all the agents that might exist
in an environment at any point. After resetting the environment, the agents attribute becomes
accessible and lists all agents that are currently active. For similar reasons, num_agents, rewards,
dones, infos, and agent_selection are not available until after a reset.

To handle cases where environments need to have environment agents as per the formal AEC Games
model, the standard is to put it into the agents with the name env and have it take None as it’s action.
We do not require this for all environments by default as it’s rarely used and makes the API more
cumbersome, but this is an important feature for certain edge cases in research. This connects to the
formal model in that, when this feature is not used, the environment actor from the formal model and
the agent actor that acted before it are merged together.

6.5 Environment Creation and the Parallel API

PettingZoo environments actually only expose the reset, seed, step, observe, render, and close
base methods and the agents, rewards, dones, infos, state and agent_iter base attributes.
These are then wrapped to add the last method. Only having environments implement primitive
methods makes creating new environments simpler, and reduces code duplication. This has the useful
side effect of allowing all PettingZoo environments to be easily changed to an alternative API by
simply writing a new wrapper. We’ve actually already done this for the default environments and
added an additional “parallel API” to them that’s almost identical to the RLlib POSG-based API via
a wrapper. We added this secondary API because in environments with very large numbers of agents,
this can improve runtime by reducing the number of Python function calls.

7 Default Environments

Similar to Gym’s default environments, PettingZoo includes 63 environments. Half of the included
environment classes (MPE, MAgent, and SISL), despite their popularity, existed as unmaintained
“research grade” code, have not been available for installation via pip, and have required large
amounts of maintenance to run at all before our cleanup and maintainership. We additionally included
multiplayer Atari games from Terry and Black [2020], Butterfly environments which are original and
of our own creation, and popular classic board and card game environments. All default environments
included are surveyed in depth in Appendix B.

8 Adoption

In it’s relatively short lifespan, PettingZoo has already achieved a meaningful amount of adoption. It
is supported by the following learning libraries: The Autonomous Learning Library [Nota, 2020],

8

AI-Traineree [Laszuk, 2020], PyMARL (ongoing) [Samvelyan et al., 2019], RLlib [Liang et al.,
2018], Stable Baselines 2 [Hill et al., 2018] and Stable Baselines 3 [Raffin et al., 2019], similar
libraries such as CleanRL [Huang et al., 2020] (through SuperSuit [Terry et al., 2020a]), and Tianshou
(ongoing) [Weng et al., 2020]. Perhaps more significantly than any of this, PettingZoo is already
being used to teach in both graduate and undergraduate reinforcement learning classes all over the
world.

9 Conclusion

This paper introduces PettingZoo, a Python library of many diverse multi-agent reinforcement
learning environments under one simple API, akin to a multi-agent version of OpenAI’s Gym library,
and introduces the agent environment cycle game model of multi-agent games.

Given the importance of multi-agent reinforcement learning, we believe that PettingZoo is capable of
democratizing the field similar to what Gym previously did for single agent reinforcement learning,
making it accessible to university scale research and to non-experts. As evidenced by it’s early
adoption into numerous MARL libraries and courses, PettingZoo is moving in the direction of
accomplishing this goal.

We’re aware of one notable limitation of the PettingZoo API. Games with significantly more than
10,000 agents (or potential agents) will have meaningful performance issues because you have to step
each agent at once. Efficiently updating environments like this, and inferencing with the associated
policies, requires true parallel support which almost certainly should be done in a language other than
Python. Because of this, we view this as a practically acceptable limitation.

We see three directions for future work. The first is additions of more interesting environments
under our API (possibly from the community, as has happened with Gym). The second direction we
envision is a service to allow different researchers’ agents to play against each other in competitive
games, leveraging the standardized API and environment set. Finally, we envision the development
of procedurally generated multi-agent environments to test how well methods generalize, akin to the
Gym procgen environments [Cobbe et al., 2019].

References
Nolan Bard, Jakob N. Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H. Francis Song, Emilio

Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, Iain Dunning, Shibl Mourad,
Hugo Larochelle, Marc G. Bellemare, and Michael Bowling. The hanabi challenge: A new frontier
for AI research. CoRR, abs/1902.00506, 2019. URL http://arxiv.org/abs/1902.00506.

Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
decentralized control of markov decision processes. Mathematics of Operations Research, 27(4):
819–840, 2002. doi: 10.1287/moor.27.4.819.297. URL https://doi.org/10.1287/moor.27.
4.819.297.

Craig Boutilier. Planning, learning and coordination in multiagent decision processes. In Proceedings
of the 6th conference on Theoretical aspects of rationality and knowledge, pages 195–210. Morgan
Kaufmann Publishers Inc., 1996.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Y. Chen, M. Zhou, Ying Wen, Y. Yang, Y. Su, W. Zhang, Dell Zhang, J. Wang, and Han Liu.
Factorized q-learning for large-scale multi-agent systems. In DAI ’19, 2019.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588, 2019.

GitHub. openai/gym dependents, 2021. URL https://web.archive.org/web/
20210527224052/https://github.com/openai/gym/network/dependents?
dependent_type=PACKAGE.

9

http://arxiv.org/abs/1902.00506
https://doi.org/10.1287/moor.27.4.819.297
https://doi.org/10.1287/moor.27.4.819.297
https://web.archive.org/web/20210527224052/https://github.com/openai/gym/network/dependents?dependent_type=PACKAGE
https://web.archive.org/web/20210527224052/https://github.com/openai/gym/network/dependents?dependent_type=PACKAGE
https://web.archive.org/web/20210527224052/https://github.com/openai/gym/network/dependents?dependent_type=PACKAGE

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. In International Conference on Autonomous Agents and Multiagent
Systems, pages 66–83. Springer, 2017.

David Ha. Slime volleyball gym environment. https://github.com/hardmaru/
slimevolleygym, 2020.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore,
Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.com/
hill-a/stable-baselines, 2018.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt,
and David Silver. Distributed prioritized experience replay. CoRR, abs/1803.00933, 2018a. URL
http://arxiv.org/abs/1803.00933.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van Hasselt,
and David Silver. Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933,
2018b.

Shengyi Huang, Rousslan Dossa, and Chang Ye. Cleanrl: High-quality single-file implementation of
deep reinforcement learning algorithms. https://github.com/vwxyzjn/cleanrl/, 2020.

Edward Hughes, Joel Z Leibo, Matthew Phillips, Karl Tuyls, Edgar Dueñez-Guzman, Antonio García
Castañeda, Iain Dunning, Tina Zhu, Kevin McKee, Raphael Koster, et al. Inequity aversion
improves cooperation in intertemporal social dilemmas. In Advances in neural information
processing systems, pages 3326–3336, 2018.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinícius Flores Zambaldi, Satyaki Upadhyay,
Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, Daniel
Hennes, Dustin Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner, János Kramár, Bart De
Vylder, Brennan Saeta, James Bradbury, David Ding, Sebastian Borgeaud, Matthew Lai, Julian
Schrittwieser, Thomas W. Anthony, Edward Hughes, Ivo Danihelka, and Jonah Ryan-Davis.
Openspiel: A framework for reinforcement learning in games. CoRR, abs/1908.09453, 2019. URL
http://arxiv.org/abs/1908.09453.

Dawid Laszuk. Ai-traineree. https://github.com/laszukdawid/ai-traineree, 2020.

Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Graepel. Multi-agent
reinforcement learning in sequential social dilemmas. arXiv preprint arXiv:1702.03037, 2017.

Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg, Joseph E
Gonzalez, Michael I Jordan, and Ion Stoica. Rllib: Abstractions for distributed reinforcement
learning. arXiv preprint arXiv:1712.09381, 2017.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph E.
Gonzalez, Michael I. Jordan, and Ion Stoica. RLlib: Abstractions for distributed reinforcement
learning. In International Conference on Machine Learning (ICML), 2018.

Siqi Liu, Guy Lever, Josh Merel, Saran Tunyasuvunakool, Nicolas Heess, and Thore Graepel.
Emergent coordination through competition. CoRR, abs/1902.07151, 2019. URL http://arxiv.
org/abs/1902.07151.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. Neural Information Processing Systems
(NIPS), 2017.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. arXiv preprint arXiv:1703.04908, 2017.

Chris Nota. The autonomous learning library. https://github.com/cpnota/
autonomous-learning-library, 2020.

OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

10

https://github.com/hardmaru/slimevolleygym
https://github.com/hardmaru/slimevolleygym
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
http://arxiv.org/abs/1803.00933
https://github.com/vwxyzjn/cleanrl/
http://arxiv.org/abs/1908.09453
https://github.com/laszukdawid/ai-traineree
http://arxiv.org/abs/1902.07151
http://arxiv.org/abs/1902.07151
https://github.com/cpnota/autonomous-learning-library
https://github.com/cpnota/autonomous-learning-library
https://blog.openai.com/openai-five/

Martin J Osborne and Ariel Rubinstein. A course in game theory. MIT press, 1994.

G. Palmer. Independent learning approaches: Overcoming multi-agent learning pathologies in
team-games. 2020.

Stefanie Anna Baby Ling Li Ashwini Pokle. Analysis of emergent behavior in multi agent environ-
ments using deep reinforcement learning. 2018.

Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah
Dormann. Stable baselines3. https://github.com/DLR-RM/stable-baselines3, 2019.

Mikayel Samvelyan, Tabish Rashid, Christian Schröder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob N. Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. CoRR, abs/1902.04043, 2019. URL http://arxiv.org/
abs/1902.04043.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences, 39(10):1095–
1100, 1953. ISSN 0027-8424. doi: 10.1073/pnas.39.10.1095.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

Sriram Ganapathi Subramanian, P. Poupart, Matthew E. Taylor, and N. Hegde. Multi type mean field
reinforcement learning. In AAMAS, 2020.

Justin K Terry and Benjamin Black. Multiplayer support for the arcade learning environment. arXiv
preprint arXiv:2009.09341, 2020.

Justin K Terry, Benjamin Black, and Ananth Hari. Supersuit: Simple microwrappers for reinforcement
learning environments. arXiv preprint arXiv:2008.08932, 2020a.

Justin K Terry, Benjamin Black, and Ananth Hari. Supersuit: Simple microwrappers for reinforcement
learning environments. arXiv preprint arXiv:2008.08932, 2020b.

Justin K Terry, Nathaniel Grammel, Ananth Hari, Luis Santos, and Benjamin Black. Revisiting
parameter sharing in multi-agent deep reinforcement learning. arXiv preprint arXiv:2005.13625,
2020c.

Gerald Tesauro. Temporal difference learning and td-gammon. Commun. ACM, 38(3):58–68, March
1995. ISSN 0001-0782. doi: 10.1145/203330.203343. URL https://doi.org/10.1145/
203330.203343.

Rene Vidal, Omid Shakernia, H Jin Kim, David Hyunchul Shim, and Shankar Sastry. Probabilistic
pursuit-evasion games: theory, implementation, and experimental evaluation. IEEE transactions
on robotics and automation, 18(5):662–669, 2002.

Eugene Vinitsky, Natasha Jaques, Joel Leibo, Antonio Castenada, and Edward Hughes. An
open source implementation of sequential social dilemma games. https://github.com/
eugenevinitsky/sequential_social_dilemma_games/, 2019. GitHub repository.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Jiayi Weng, Minghao Zhang, Alexis Duburcq, Kaichao You, Dong Yan, Hang Su, and Jun Zhu.
Tianshou. https://github.com/thu-ml/tianshou, 2020.

11

https://github.com/DLR-RM/stable-baselines3
http://arxiv.org/abs/1902.04043
http://arxiv.org/abs/1902.04043
https://doi.org/10.1145/203330.203343
https://doi.org/10.1145/203330.203343
https://github.com/eugenevinitsky/sequential_social_dilemma_games/
https://github.com/eugenevinitsky/sequential_social_dilemma_games/
https://github.com/thu-ml/tianshou

Daochen Zha, Kwei-Herng Lai, Yuanpu Cao, Songyi Huang, Ruzhe Wei, Junyu Guo, and Xia Hu.
Rlcard: A toolkit for reinforcement learning in card games. arXiv preprint arXiv:1910.04376,
2019.

Lianmin Zheng, Jiacheng Yang, Han Cai, Weinan Zhang, Jun Wang, and Yong Yu. Magent: A
many-agent reinforcement learning platform for artificial collective intelligence. arXiv preprint
arXiv:1712.00600, 2017.

12

Agent 1

Agent 2

River Tiles

(a) The initial setup with two agents and two river
tiles. When the river tiles become dirty, they are
shown as a brownish color instead.

Cleaning
Beam Tiles

Agent 1

Agent 2

(b) The result of both agents perform the “clean”
action. Both river tiles can be are cleaned since
Agent 1’s action is resolved first.

Figure 7: Cleanup, a Sequential Social Dilemma Game from Vinitsky et al. [2019].

Agent 1

Agent 2

(a) If there are no dirty river tiles in the path of the
cleaning beams, the beams will extend to the full
length of five tiles.

Agent 1

Agent 2

(b) If there is a dirty river tile in the path of a
beam, the beam will stop at the tile, changing it to
a “clean” river tile.

Figure 8: An example of Agent 1 using the “clean” action while facing East. The beams extend to a
length of up to five tiles. The “main” beam extends directly in front of the agent, while two auxiliary
beams start at the tiles directly next to the agent (one to the left and one to the right) and also extend
up to five tiles. A beam stops when it hits a dirty river tile.

A Additional Case Study Information

A.1 Race Conditions in Sequential Social Dilemma Games

The Sequential Social Dilemma Games, introduced in Leibo et al. [2017], are a kind of MARL
environment where good short-term strategies for single agents lead to bad long-term results for all of
the agents. New SSD environments, including the Cleanup environment, were introduced in Hughes
et al. [2018]. All of these have open source implementations in [Vinitsky et al., 2019]. The states of
these games are represented by a grid of tiles, where each tile represents either an agent or a piece of
the environment. In the Cleanup environment, the environment tiles can be empty tiles, river tiles,
and apple tiles. Collecting apple tiles results in a reward for the agent and the agents must clean the
river tiles with a “cleaning beam” for apple tiles to spawn. The cleaning beam extends in front of
agents, one tile at a time, until it hits a dirty river tile (“waste”) or extends to its maximum length of 5
tiles. Additionally, two more beams extend in front of the agent—one starting in the tile directly to
the agent’s left, and one from the tile on the right—until each hits a “waste” tile or reaches a length
of 5 tiles. The cleaning beam is shown in Figure 8a. Note that while beams stop at “waste” tiles, they
will continue to extend past clean river tiles.

The agents act sequentially in the same order every turn, including the firing of their beams. In the
case of two agents trying to occupy the same space, one is chosen randomly, however the tie breaking
with regards to the beams is biased, due to a bug. Consider the setup in Figure 7 where each agent
chooses the “clean” action for the next step. This results in Agent 1 firing their cleaning beam first,
clearing the close river tile. Next, Agent 2 fires their cleaning beam and they are able to clean the

13

Agent 2

Agent 1

(a) The same setup as in Figure 7, but with the
agent labels reversed.

Agent 2

Agent 1

(b) The result of both agents performing the “clean”
action, with this agent assignment.

Figure 9: The impact of switching the internal agent order on how the environment evolves. When
both agents clean, agent 1’s action is resolved first, and the main beam stops when it hits the near
dirty river tile, so the far river tile is not cleaned. In Figure 7, Agent 2’s beam was able to reach the
far beam because Agent 1’s beam cleaned the near tile first.

far river tile because the close tile has already been cleared by Agent 1. However, if we keep the
same placement and actions but switch the labels of the agents, we get a different result, seen in
Figure 9. Now, Agent 1 fires first and hits the close river tile and can no longer reach the far river
tile. In situations like these, the observation the second agent’s policy is using to act on is going to be
inherently wrong, and if it had the true environment state before acting it would very likely wish to
make a different choice.

This is a serious class of bug that’s very easy to introduce when using parallel action-based APIs,
while using AEC games-based APIs prevents the class entirely. In this specific instance, the bug had
gone unnoticed for years.

A.2 Reward Defects in Pursuit

We validated the impact of reward pruning experimentally by training parameter shared Ape-X DQN
[Horgan et al., 2018b] (the best performing model on pursuit [Terry et al., 2020c]) four times using
RLLib [Liang et al., 2017] with and without reward pruning, achieving better results with reward
pruning every time and 22.03% more total reward on average Figure 10a, while PPO [Schulman et al.,
2017] learned 16.12% more reward on average with this Figure 10b. Saved training logs and all code
needed to reproduce the experiments and plots is available in the supplemental materials.

B Default Environments

This section surveys all the environments that are included in PettingZoo by default.

Atari

Atari games represent the single most popular and iconic class of benchmarks in reinforcement
learning. Recently, a multi-agent fork of the Arcade Learning Environment was created that allows
programmatic control and reward collection of Atari’s iconic multi-player games [Terry and Black,
2020]. As in the single player Atari environments, the observation is the rendered frame of the game,
which is shared between all agents, so there is no partial observability. Most of these games have
competitive or mixed reward structures, making them suitable for general study of adversarial and
mixed reinforcement learning. In particular, Terry and Black [2020] categorizes the games into 7
different types: 1v1 tournament games, mixed sum survival games (Space Invaders, shown in Figure
11a. is an example of this), competitive racing games, long term strategy games, 2v2 tournament
games, a four-player free-for-all game and a cooperative game.

Butterfly

Of all the default environments included, the majority of them are competitive. We wanted to
supplement this with a set of interesting graphical cooperative environments. Pistonball, depicted

14

10k 20k 30k 40k 50k
Episode

100

200

300

400

500

600

A
ve

ra
ge

To
ta

lR
ew

ar
d

Pursuit

Unpruned 0
Unpruned 1
Unpruned 2
Unpruned 3

Pruned 0
Pruned 1
Pruned 2
Pruned 3

(a) Learning on the pursuit environment with and without pruned rewards, using parameter sharing based on
Ape-X DQN. This shows an average of an 22.03% improvement by using this method.

10k 20k 30k 40k 50k
Episode

60

70

80

90

100

110

120

A
ve

ra
ge

To
ta

lR
ew

ar
d

Pursuit

Unpruned 0
Unpruned 1
Unpruned 2
Unpruned 3

Pruned 0
Pruned 1
Pruned 2
Pruned 3

(b) Learning on the pursuit environment with and without reward pruning, using parameter sharing based on
PPO. Reward pruning increased the total reward by 16.12% on average.

in Figure 11b, is an environment where pistons need to coordinate to move a ball to the left, while
only being able to observe a local part of the screen. It requires learning nontrivial emergent behavior
and indirect communication to perform well. Knights Archers Zombies is a game in which players
work together to defeat approaching zombies before they can reach the players. It is designed to be a
fast paced, graphically interesting combat game with partial observability and heterogeneous agents,
where achieving good performance requires extraordinarily high levels of agent coordination. In
Cooperative pong two dissimilar paddles work together to keep a ball in play as long as possible. It
was intended to be a be very simple cooperative continuous control-type task, with heterogeneous
agents. Prison was designed to be the simplest possible game in MARL, and to be used as a debugging
tool. In this environment, no agent has any interaction with the others, and each agent simply receives
a reward of 1 when it paces from one end of its prison cell to the other. Prospector was created to
be a very challenging game for conventional methods—it has two classes of agents with different
goals, action spaces, and observation spaces (something many current cooperative MARL algorithms
struggle with), and has very sparse rewards (something all RL algorithms struggle with). It is intended
to be a very difficult benchmark for MARL, in the same vein as Montezuma’s Revenge.

Classic

Classical board and card games have long been some of the most popular environments in reinforce-
ment learning [Tesauro, 1995, Silver et al., 2016, Bard et al., 2019]. We include all of the standard
multiplayer games in RLCard [Zha et al., 2019]: Dou Dizhu, Gin Rummy, Leduc Hold’em, Limit Texas
Hold’em, Mahjong, No-limit Texas Hold’em, and Uno. We additionally include all AlphaZero games,
using the same observation and action spaces—Chess and Go. We finally included Backgammon,
Connect Four, Checkers, Rock Paper Scissors, Rock Paper Scissors Lizard Spock, and Tic Tac Toe to
add a diverse set of simple, popular games to allow for more robust benchmarking of RL methods.

MAgent

The MAgent library, from Zheng et al. [2017] was introduced as a configurable and scalable en-
vironment that could support thousands of interactive agents. These environments have mostly
been studied as a setting for emergent behavior [Pokle, 2018], heterogeneous agents [Subramanian
et al., 2020], and efficient learning methods with many agents [Chen et al., 2019]. We include a

15

(a) Atari: Space Invaders
(b) Butterfly: Pistonball

(c) Classic: Chess (d) MAgent: Adversarial Pursuit

(e) MPE: Simple Adversary
(f) SISL: Multiwalker

Figure 11: Example environments from each class.

number of preset configurations, for example the Adversarial Pursuit environment shown in Figure
11d. We make a few changes to the preset configurations used in the original MAgent paper. The
global "minimap" observations in the battle environment are turned off by default, requiring implicit
communication between the agents for complex emergent behavior to occur. The rewards in Gather
and Tiger-Deer are also slightly changed to prevent emergent behavior from being a direct result of
the reward structure.

MPE

The Multi-Agent Particle Environments (MPE) were introduced as part of Mordatch and Abbeel
[2017] and first released as part of Lowe et al. [2017]. These are 9 communication oriented environ-
ments where particle agents can (sometimes) move, communicate, see each other, push each other
around, and interact with fixed landmarks. Environments are cooperative, competitive, or require
team play. They have been popular in research for general MARL methods Lowe et al. [2017],
emergent communication [Mordatch and Abbeel, 2017], team play [Palmer, 2020], and much more.
As part of their inclusion in PettingZoo, we converted the action spaces to a discrete space which
is the Cartesian product of the movement and communication action possibilities. We also added
comprehensive documentation, parameterized any local reward shaping (with the default setting

16

being the same as in Lowe et al. [2017]), and made a single render window which captures all the
activities of all agents (including communication), making it easier to visualize.

SISL

We finally included the three cooperative environments introduced in Gupta et al. [2017]: Pursuit,
Waterworld, and Multiwalker. Pursuit is a standard pursuit-evasion game Vidal et al. [2002] where
pursuers are controlled in a randomly generated map. Pursuer agents are rewarded for capturing
randomly generated evaders by surrounding them on all sides. Waterworld is a continuous control
game where the pursuing agents cooperatively hunt down food targets while trying to avoid poison
targets. Multiwalker (Figure 11f) is a more challenging continuous control task that is based on
Gym’s BipedalWalker environment. In Multiwalker, a package is placed on three independently
controlled robot legs. Each robot is given a small positive reward for every unit of forward horizontal
movement of the package, while they receive a large penalty for dropping the package.

B.1 Butterfly Baselines

All environments implemented in PettingZoo include baselines to provide a general sense of the
difficulty of the environment, and for something to initially compare against. We do this here for
the Butterfly environments that this library introduces for the first time; similar baselines exist in
the papers introducing all other environments. We used fully parameter shared [Gupta et al., 2017]
ApeX DQN [Horgan et al., 2018a] for all environments except Prospector, for which we used PPO
[Schulman et al., 2017] from RLLib [Liang et al., 2018] since it has a continuous action space. Our
results are shown in Figure 12. All preprocessing was done with the SuperSuit wrapper library [Terry
et al., 2020b]. All code, training logs, and saved policies are available in the code included in the
supplemental materials.

C Formal Definitions

C.1 Partially Observable Stochastic Games

The formal definition of a POSG is shown in Definition 1. This definition can be viewed as the typical
Stochastic Games model [Shapley, 1953] with the addition of POMDP-style partial observability.
Definition 1. A Partially-Observable Stochastic Game (POSG) is a tuple
〈S, s0, N, (Ai)i∈[N], P, (Ri)i∈[N], , (Ωi)i∈[N], , (Oi)i∈[N]〉, where:

• S is the set of possible states.

• s0 is the initial state.

• N is the number of agents. The set of agents is [N].

• Ai is the set of possible actions for agent i.

• P : S ×
∏

i∈[N]Ai × S → [0, 1] is the transition function. It has the property that for all
s ∈ S, for all (a1, a2, . . . , aN) ∈

∏
i∈[N]Ai,

∑
s′∈S P (s, a1, a2, . . . , aN , s

′) = 1.

• Ri : S ×
∏

i∈[N]Ai × S → R is the reward function for agent i.

• Ωi is the set of possible observations for agent i.

• Oi : Ai × S × Ωi → [0, 1] is the observation function. It has the property that∑
ω∈Ωi

Oi(a, s, ω) = 1 for all a ∈ Ai and s ∈ S.

C.2 Extensive Form Games

The definition given here follows closely that of Osborne and Rubinstein [1994], to which we refer
the reader for a more in-depth discussion of Extensive Form Games and their formal definition.
Definition 2. An Extensive Form Game is defined by:

• A set of agents [N] = {1, 2, . . . , N}.

17

2 4 6 8 10 12 14
Million Steps

0

200

400

600

800

1000

1200

1400

A
ve

ra
ge

To
ta

lR
ew

ar
d

(a) Knights Archers Zombies

2 4 6 8 10 12 14
Million Steps

0

1

2

3

4

5

6

7

A
ve

ra
ge

To
ta

lR
ew

ar
d

(b) Pistonball

2 4 6 8 10 12 14
Million Steps

−95

−90

−85

−80

−75

−70

−65

A
ve

ra
ge

To
ta

lR
ew

ar
d

(c) Cooperative Pong

2 4 6 8 10 12 14
Million Steps

0

1

2

3

4

5

6

A
ve

ra
ge

To
ta

lR
ew

ar
d

(d) Prison

2 4 6 8 10 12 14
Million Steps

50

100

150

200

250

300

350

400

450

A
ve

ra
ge

To
ta

lR
ew

ar
d

(e) Prospector

Figure 12: Total reward when learning on each Butterfly environment via parameter shared Ape-X
DQN (a-d) and parameter shared PPO (e).

• A “Nature” player denoted as “agent” 0. For convenience, we define N := [N] ∪ {0}. The
Nature agent is responsible for describing the random, stochastic, or luck-based elements of
the game, as described below.

• A set Ã of action sequences. An action sequence is a tuple ~a = (a1, a2, . . . , ak) where each
element indicates an action taken by an agent. In infinite games, action sequences need not
be finite. The set Ã indicates all possible sequences of actions that may be taken in the game
(i.e., “histories” of players’ moves or agents’ actions). It satisfies the following properties:

– The empty sequence is in the set: ∅ ∈ Ã.

– If (a1, . . . , ak) ∈ Ã, then for l < k we also have (a1, . . . , al) ∈ Ã.

– In infinite games, if an infinite sequence (a1, a2, . . .) satisfies the property that for all
k, (a1, a2, . . . , ak) ∈ Ã, then (a1, a2, . . .) ∈ Ã.

For a finite sequence ~a = (a1, . . . , ak), denote by (~a, a) the sequence (a1, . . . , ak, a).
Then the set of actions available in the next turn following a sequence ~a is given by
A(~a) := {a | (~a, a) ∈ Ã} (for convenience, we define A(~a) = ∅ if ~a is infinite). We say a
sequence of actions ~a is terminal if it is either infinite or if it is a maximal finite sequence,
i.e. ~a is terminal if and only if A(~a) = ∅. We denote the set of terminal sequences by
T := {~a | A(~a) = ∅}.

18

• A function τ : (Ã \ T)→ N , which specifies the agent whose turn it is to act next after a
given sequence of actions. Note that this is not stochastic, but random player order can be
captured by inserting a Nature turn.

• A probability distribution P (~a, ·) for Nature’s actions. It is defined only for action sequences
for which Nature acts next, i.e. sequences ~a ∈ Ã for which τ(~a) = 0. Specifically, P (~a, a)
is the probability that Nature takes action a after the sequence of actions ~a has occurred.

• For each agent i ∈ [N], a partition Hi of the sequences of actions Ãi := {~a | τ(~a) = i}.
The partition Hi is called the information partition of agent i, and elements of Hi are called
information sets. For convenience, define H :=

⋃
i∈[N]Hi. The information sets must obey

the additional property that for any information set h ∈ H and any two action sequences
~a,~a′ ∈ H , we have τ(~a) = τ(~a′) and A(~a) = A(~a′).

• For each agent i ∈ [N], a reward function Ri : T → R.

C.3 Agent Environment Cycle Games

As mentioned in Section 5, the stochastic nature of the state transitions is modeled as an “environment”
agent, which does not take an action but rather transitions randomly from the current state to a new
state according to some given probability distribution. With the stochasticity of state transitions
separated out as a distinct “environment” agent, we can then model the transitions of the actual
agents deterministically. To this end, each (non-environment) agent i has a deterministic transition
function Ti which depends only on the current state and the action taken, while the environment
has a stochastic transition function P which transitions to a new state randomly depending on the
current state (it may depend on the actions taken previously by the agents, since the current state is
determined by these actions).

Definition 3. An Agent-Environment Cycle Game (AEC Game) is a tuple
〈S, s0, N, (Ai)i∈[N], (Ti)i∈[N], P, (Ri)i∈[N], (Ri)i∈[N], , (Ωi)i∈[N], , (Oi)i∈[N], , ν〉, where:

• S is the set of possible states.

• s0 is the initial state.

• N is the number of agents. The agents are numbered 1 through N . There is also an
additional “environment” agent, denoted as agent 0. We denote the set of agents along with
the environment by N := [N] ∪ {0}.

• Ai is the set of possible actions for agent i. For convenience, we further define A0 = {∅}
(i.e., a single “null action” for environment steps) and A :=

⋃
i∈N Ai.

• Ti : S ×Ai → S is the transition function for agents. State transitions for agent actions are
deterministic.

• P : S × S → [0, 1] is the transition function for the environment. State transitions for
environment steps are stochastic: P (s, s′) is the probability that the environment transitions
into state s′ from state s.

• Ri ⊆ R is the set of possible rewards for agent i. We assume this is finite.

• Ri : S ×N ×A× S ×Ri → [0, 1] is the reward function for agent i. Ri ⊆ R denotes the
set of all possible rewards for agent i (which we assume to be finite).

Ri is the reward function for agent i. The set of all possible rewards for each agent is
assumed to be finite, which we denote Ri ⊆ R. It is stochastic: Ri(s, j, a, s

′, r) is the
probability of agent i receiving reward r when agent j takes action a while in state s, and
the game transitions to state s′. We also defineR :=

⋃
i∈[N]Ri.

• Ωi is the set of possible observations for agent i.

• Oi : S × Ωi → [0, 1] is the observation function for agent i. Oi(s, ω) is the probability of
agent i observing ω while in state s.

19

• ν : S ×N ×A×N → [0, 1] is the next agent function. This means that ν(s, i, a, j) is the
probability that agent j will be the next agent permitted to act given that agent i has just
taken action a in state s. This should attribute a non-zero probability only when a ∈ Ai.

In this definition, the game starts in state s0 and the environment agent acts first. Having the
environment agent act first allows the first actual agent to act to be determined randomly if desired
(choosing the first agent deterministically can be done easily by having the environment simply do
nothing in this first step). The game then evolves in “turns” where in each turn an agent i receives
an observation ωi ∈ Ωi (any given observation ω is seen with probability Oi(s, ω)) and, based on
this observation, chooses an action ai ∈ Ai. The game then transitions from the current state s to a
new state s′ according to the transition function. If i ∈ [N], the state transition is deterministically
Ti(s, ai). If i = 0, the new state is stochastic, so state s′ occurs with probability P (s, s′). Then,
a new agent i′ is determined according to the “next agent” function, so that i′ is next to act with
probability ν(s, i, ai, i

′). The observation ωi that is received is random, occurring with probability
Oi(s, ωi). Note that we can allow for the state to transition randomly in response to an agent’s
action by simply inserting an “environment step” immediately following an agent’s action, by setting
ν(s, i, ai, 0) = 1 and allowing the following environment step to transition the state randomly. At
every step, every agent j receives the partial reward r′ with probability Rj(s, i, ai, s

′, r′).

D Omitted Proofs

D.1 POSGs are Equivalent to AEC Games

The inclusion of the stochastic ν (next-agent) function in the definition of AEC games allows for
capturing many turn-based games with complex turn orders (consider Uno, for instance, where
players may be skipped or the order reversed). It is not immediately obvious that this allows for
representing games in which agents act simultaneously. However, we show here that in fact AEC
games can be used to theoretically model games with simultaneous actions.

To see this, imagine simulating a POSG by way of a “black box” which takes the actions of all agents
simultaneously, and then — one by one — feeds them to a purpose-built AEC game whose states
are designed to “encode” each agent’s action, “queueing” them up over the course of N steps (one
for each agent). Once all of the actions have been fed to the AEC game, a single environment step
resolves these “queued up” actions all at once. If we design the AEC game in the right way, this
total of N + 1 steps (N for queueing the actions, and one for the environment to resolve the joint
action) produces an outcome that is identical to the result of a single step in the original POSG. This
is formalized below.

Theorem 1. For every POSG, there is an equivalent AEC Game.

Proof of Theorem 1. Let G = 〈S, N, {Ai}, P, {Ri}, {Ωi}, {Oi}〉 be a POSG. To prove this, it will
be necessary to show precisely what is meant by “equivalent.” We will construct a new AEC Game
GAEC in such a way that for every N + 1 steps of GAEC the probability distribution over possible
states is identical to the state distribution for G after a single step, the distributions over observations
received by each agent is identical in G and in GAEC, and the reward obtained by each agent is the
same.

We define GAEC as follows:

GAEC = 〈S ′, N, {Ai}, {Ti}, P ′, {R′i}, {Ωi}, {O′i}, ν〉

where

• S ′ = S × A1 × A2 × · · · × AN . That is, an element of S ′ is a tuple (s, a1, a2, . . . , aN)
where s ∈ S and for each i ∈ [N], ai ∈ Ai.

• Ti((s, a1, a2, . . . , ai, . . . , aN), a′i) = (s, a1, a2, . . . , a
′
i, . . . , aN).

• For s = (s, a1, a2, . . . , aN) and s′ = (s′, a1, a2, . . . , aN), we define P ′(s, s′) =
P (s, a1, a2, . . . , aN , s

′). If s and s′ are such that ai 6= a′i for any i ∈ [N], then
P ′(s, s′) = 0.

20

• For s = (s, a1, a2, . . . , aN), s′ = (s′, a1, a2, . . . , aN), and r = Ri(s, a1, a2, . . . , aN , s
′),

we let R′i(s, 0,∅, s′, r) = 1. We define R′i = 0 for all other cases.

• O′i(s, a1, a2, . . . , aN) = Oi(s)

• ν((s, a1, a2, . . . , aN), i, a′i, j) = 1 if j ≡ i+ 1 (mod N + 1) (and equals 0 otherwise).

The AEC game GAEC begins with agent 1. If the initial state of the POSG G was s0, then the initial
state of GAEC is (s0, ·, ·, . . . , ·), where all but the first element of the tuple are chosen arbitrarily.

Let Pt,s be the probability that the POSG G is in state s after t steps. For an action vector a =
(a1, . . . , aN) ∈ A1 × · · · × AN , let P ′t,s,a be the probability that GAEC is in state (s, a1, . . . , aN)
after t steps. Finally, let P ′t,s =

∑
a∈A1×···×AN

P ′t,s,a.

Trivially, P0,s = P ′0,s for all s ∈ S. Now, suppose that after t steps of G, Pt,s = P ′t(N+1),s for all
s ∈ S (our inductive hypothesis). For any joint action a = (a1, . . . , aN), the state distribution of G at
step t+ 1 if the joint action a is taken is given by Pt+1,s′ = Pt,s · P (s, a1, . . . , aN , s

′). Further, the
reward obtained by agent i for this joint action, if the new state is s′, is Ri(s, a1, . . . , aN , s

′). Let s =
(s, a1, . . . , aN) and s′ = (s′, a1, . . . , aN). Then, in GAEC, if the agents take actions a1, a2, . . . , aN
respectively on their turns, the state distribution of GAEC at step (t + 1)(N + 1) is given by
P ′(t+1)(N+1),s′ = P ′(t+1)(N+1),s′,a = P ′t(N+1),sP

′(s, s′). By the inductive hypothesis, P ′t(N+1),s =

Pt,s, and by the definition of P ′(s, s′) in GAEC, it is clear that P ′(s, s′) = P (s, a1, . . . , aN , s
′).

Thus, P ′(t+1)(N+1),s′ = Pt,sP (s, a1, . . . , aN , s
′) = Pt+1,s′ .

The above establishes a strict equivalence between the state distributions of G at step t and GAEC at
step t(N + 1) for any t. Between steps t(N + 1) + 1 and (t+ 1)(N + 1) of GAEC, each agent in
turn receives an observation and then chooses its action. Specifically, agent i acts at step t(N) + i
immediately after receiving an observation ωi with probability O′i(s, a1, . . . , aN) = Oi(s). Thus, the
marginal probability distribution (when conditioned on transitioning into state s) of the observation
received by agent i immediately after acting at time t in G is identical to the marginal distribution
of the observation received by i immediately before acting at time t(N + 1) + i in GAEC, i.e.
PrG,t(ωi = ω | st = s) = PrGAEC,t(N+1)+i(ωi = ω | st(N+1),0 = s).

The second part of the equivalence is observing that the reward received by an agent i in G after the
joint action a is taken is equivalent to the total reward received by agent i in GAEC across all steps
from t(N + 1) + 1 through (t + 1)(N + 1) when the agents take actions a1, . . . , aN respectively.
We can see that this is indeed the case, since the rewards received by agent i in GAEC from step
t(N + 1) + 1 through step (t+ 1)(N + 1) is 0 at every step but the environment step (t+ 1)(N + 1).
By definition of R′ in GAEC, R′i(s, 0,∅, s′, Ri(s, a1, . . . , aN , s

′)) = 1, so the total reward received
by any agent i in GAEC is Ri(s, a1, . . . , aN , s

′). This establishes the second part of our equivalence
(that the reward at step t(N + 1) in GAEC is identical to the reward at step t of G, if the actions are
the same).

One way to think of this construction is that the actions are still resolved simultaneously via the
environment step (which is responsible for the stochastic state transition and the production of
rewards); we simply break down the production of the joint action into smaller units whereby each
agent chooses and “locks in” their actions one step at a time. A toy example to see this equivalence is
to imagine a multiplayer card game in which each player has a hand of cards and each turn consists of
all players choosing one card from their hand which is revealed simultaneously with all other players.
An equivalent game has each player in sequence choosing a card and placing it face down on their
turn, followed by a final action (the “environment step” in which all players simultaneously reveal
their selected card.

At first, it may appear as though the AEC game is in fact more powerful than the POSG, since
in addition to being able to handle simultaneous-action games as shown above, it can represent
sequential games, including sequential games with complex and dynamic turn orders such as Uno
(another aspect of our AEC definition that seems more general than in POSGs is the fact that
the reward function in an AEC game is stochastic, allowing rewards to be randomly determined).
However, it turns out that a POSG can be used to model a sequential Handling the stochastic rewards
and stochastic next-agent function is non-obvious and is omitted here due to space constraints; the
construction and proof can be found in Appendix D.1.

21

We next show how to convert an AEC game to a POSG for the case of deterministic rewards.
Definition 4. An AEC Game

G = 〈S, N, {Ai}, {Ti}, P, {Ri}, {Ωi}, {Oi}, ν〉

is said to have deterministic rewards if for all i, j ∈ N , all a ∈ Aj , and all s, s′ ∈ S, there exists a
R∗i (s, j, a, s′) such that Ri(s, j, a, s

′, r) = 1 for r = R∗i (s, j, a, s′) (and 0 for all other r).

Notice that an AEC Game with deterministic rewards may still depend on the new state s′ which can
itself be stochastic in the case of the environment (j = 0).
Theorem 2. Every AEC Game with deterministic rewards has an equivalent POSG.

Proof. Suppose we have an AEC game

G = 〈S, N, {Ai}, {Ti}, P, {Ri}, {Ωi}, {Oi}, ν〉

with deterministic rewards. We define GPOSG = 〈S ′, N, {Ai}, P ′, {R′i}, {Ωi}, {Oi}〉 as follows.

• S ′ = S ×N

• P ′((s, i), a1, . . . , aN , (s
′, i′)) = ν(s, i, ai, s

′, i′) · Pr(s′ | s, i, ai), where

Pr(s′ | s, i, ai) =

1 if i > 0, T (s, ai) = s′

P (s, s′) if i = 0

0 o/w

• R′i((s, j), a, (s
′, j′)) = R∗i (s, j, a, s′)

In this construction, the new state in the POSG encodes information about which agent is meant to
act. State transitions in the POSG therefore encode both the state transition of the original AEC game
and the transition for determining the next agent to act. In each step, the state transition depends only
on the agent who’s turn it is to act (which is included as part of the state).

This construction adapts POSGs to be strictly turn-based so that it is able to represent AEC Games.

We now present the full proof.
Theorem 3. Every AEC Game has an equivalent POSG.

Proof. Suppose we have an AEC game G = 〈S, N, {Ai}, {Ti}, P, {Ri}, {Ωi}, {Oi}, ν〉, andR is
the (finite) set of all possible rewards. We define GPOSG = 〈S ′, N, {Ai}, P ′, {R′i}, {Ωi}, {Oi}〉 as
follows.

The state set is S ′ = S ×N ×RN . An element of S ′ is a tuple (s, i, r), where r = (r1, r2, . . . , rN)
is a vector of rewards for each agent.

The transition function is given by

P ′((s, i, r), a1, a2, . . . , aN , (s
′, i′, r′)) =

ν(s, i, ai, s
′, i′) Pr(s′ | s, i, ai)

∏
j∈[N]

Rj(s, i, ai, s
′, r′i)

where

Pr(s′ | s, i, ai) =

1 if i > 0 and T (s, ai) = s′

P (s, s′) if i = 0

0 o/w

The reward function is given by R′i((s, j, r), a, (s′, j′, r′)) = r′i

22

	1 Introduction
	2 Background and Related Works
	2.1 Partially Observable Stochastic Games and RLlib
	2.2 OpenSpiel and Extensive Form Games

	3 PettingZoo Design Goals
	3.1 Be like Gym
	3.2 Be a Universal API

	4 Case Studies of Problems With The POSG Model in MARL
	4.1 POSGs Don't Allow Access To Information You Should Have
	4.2 POSGs Based APIs Don't Make Conceptual Sense For Games Implemented In Code

	5 The Agent Environment Cycle Games Model
	6 API Design
	6.1 Basic API
	6.2 The agent_iter Method
	6.3 The last Method
	6.4 Additional API Features
	6.5 Environment Creation and the Parallel API

	7 Default Environments
	8 Adoption
	9 Conclusion
	A Additional Case Study Information
	A.1 Race Conditions in Sequential Social Dilemma Games
	A.2 Reward Defects in Pursuit

	B Default Environments
	B.1 Butterfly Baselines

	C Formal Definitions
	C.1 Partially Observable Stochastic Games
	C.2 Extensive Form Games
	C.3 Agent Environment Cycle Games

	D Omitted Proofs
	D.1 POSGs are Equivalent to AEC Games

